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ABSTRACT

We estimate the rotation speed of Population III (Pop III) stars within a minihalo at
z ∼ 20 using a smoothed particle hydrodynamics (SPH) simulation, beginning from
cosmological initial conditions. We follow the evolution of the primordial gas up to
densities of 1012 cm−3. Representing the growing hydrostatic cores with accreting sink
particles, we measure the velocities and angular momenta of all particles that fall onto
these protostellar regions. This allows us to record the angular momentum of the sinks
and estimate the rotational velocity of the Pop III stars expected to form within them.
The rotation rate has important implications for the evolution of the star, the fate
encountered at the end of its life, and the potential for triggering a gamma-ray burst
(GRB). We find that there is sufficient angular momentum to yield rapidly rotating
stars (>

∼
1000 km s−1, or near break-up speeds). This indicates that Pop III stars likely

experienced strong rotational mixing, impacting their structure and nucleosynthetic
yields. A subset of them was also likely to result in hypernova explosions, and possibly
GRBs.

Key words: cosmology: theory – early Universe – galaxies: formation – stars: for-
mation.

1 INTRODUCTION

The first stars, also known as Population III (Pop III) stars,
are believed to be early drivers of cosmic evolution (e.g.
Barkana & Loeb 2001; Bromm & Larson 2004; Ciardi &
Ferrara 2005; Glover 2005; Bromm et al. 2009; Loeb 2010).
These stars are thought to have formed around z ∼ 20
within minihaloes of mass M ∼ 106 M� (e.g. Haiman et al.
1996; Tegmark et al. 1997; Yoshida et al. 2003). Not only
did the radiation from the first stars likely start the process
of reionizing the intergalactic medium (IGM; e.g. Kitayama
et al. 2004; Sokasian et al. 2004; Whalen et al. 2004; Alvarez
et al. 2006; Johnson et al. 2007), but when some of these
stars produced supernovae (SNe) explosions, they released
the first heavy elements into the IGM, providing its initial
metal enrichment (e.g. Madau et al. 2001; Mori et al. 2002;
Bromm et al. 2003; Wada & Venkatesan 2003; Norman et al.
2004; Tornatore et al. 2007; Greif et al. 2007, 2010; Wise &
Abel 2008).

The mass of the first stars is the main factor in de-
termining their cosmological impact. Pop III stars are gen-
erally believed to be very massive (∼ 100 M�; e.g. Abel
et al. 2002; Bromm et al. 2002), though recent evidence for
fragmentation in primordial gas may imply that the typi-
cal Pop III mass was somewhat lower (Clark et al. 2008,
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2010; Turk et al. 2009; Stacy et al. 2010). The stellar lu-
minosity and ionizing photon production primarily depend
on mass, as does the end state of the star. For instance,
stars between 40 M� and 140 M� are expected to collapse
directly into black holes, while stars in the mass range of
140 M� < M∗ < 260 M� will die as pair-instability super-
novae (PISNe; Heger & Woosley 2002). Below 40 M�, stars
are again expected to explode as core-collapse SNe, leaving
behind a neutron star or black hole. Nomoto et al. (2003),
however, find that the nature of the explosions from this
mass range may vary depending on the angular momentum
of the collapsing core. Stars with little angular momentum
will explode as faint SNe, while stars of the same mass but
higher angular momentum will become extremely energetic
hypernovae.

Pop III stars also have the potential to produce gamma-
ray bursts (GRBs), particularly given the connection be-
tween long-duration GRBs and the deaths of massive stars
(see Woosley & Bloom 2006). GRBs may provide one of the
most promising methods of directly probing the final stages
of Pop III stars, provided they occurred with a high enough
frequency (e.g. Bromm & Loeb 2002, 2006; Gou et al. 2004;
Belczynski et al. 2007). Naoz & Bromberg (2007) used early
Swift data and an idealized star formation rate model to es-
timate that Pop III stars may indeed produce GRBs at an
efficiency of ∼ 10−4 GRBs per solar mass incorporated in
primordial stars. For the collapsar model of GRB generation
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to operate, this will require sufficient angular momentum in
the Pop III progenitor for an accretion torus to form around
the remnant black hole (e.g. Woosley 1993; Lee & Ramirez-
Ruiz 2006). The progenitor star must also lose its hydrogen
envelope to enable the relativistic jet to penetrate through
and exit the star (e.g. Zhang et al. 2004). Fulfilling both of
these conditions can be difficult for a single-star progenitor,
however, because removing the extended hydrogen envelope
will also lead to removal of angular momentum in the core
(e.g. Spruit 2002; Heger et al. 2005; Petrovic et al. 2005).
These conditions for a GRB may be more easily met, how-
ever, in a close binary system that experiences Roche lobe
overflow (e.g. Lee et al. 2002; Izzard et al. 2004). Let us
also note an alternate scenario recently explored by Suwa &
Ioka (2010). They analytically find that the jet can break
out even from an extended hydrogen envelope of a Pop III
star if the jet is powered by magnetic fields. This interesting
result warrants further numerical study.

Another possibility arises if a Pop III star has a large
enough spin. This can affect its nucleosynthesis and change
the evolution off the main sequence (MS), opening a new
pathway for the formation of single-star progenitor GRBs
(e.g. Yoon & Langer 2005; Woosley & Heger 2006; Ekström
et al. 2008a). Woosley & Heger (2006) find through their
stellar evolution models that very massive ∼ 20 M� stars
rapidly rotating at ' 400 km s−1 (' 40% of the break-up
speed) can completely mix while on the MS, bypassing the
red giant phase and becoming a Wolf-Rayet (WR) star. This
evolutionary path may furthermore allow the star to retain
enough angular momentum to become a GRB, particularly
if the star has low-metallicity and thus experiences signifi-
cantly reduced mass loss compared to solar-metallicity WR
stars. Yoon & Langer (2005) agree, using a different nu-
merical methodology, that rotationally induced mixing will
allow a low-metallicity massive star to evolve into a rapidly
rotating WR star and potentially a GRB. Finally, Ekström
et al. (2008a) studied the evolution of metal-free stars with
a range of masses (15-200 M�) and a high rotation rate of
800 km s−1, corresponding to a fraction of 40-70% of their
break-up speed. In contrast to the previous studies, in their
models chemical mixing was usually not sufficient for the
red giant phase to be avoided. In fact, they found that the
rotating stars generally end their lives at a cooler location
of the Hertzsprung-Russel diagram (HRD). In addition, ro-
tating stars produced a higher amount of metals, compared
to their non-rotating counterparts. Ekström et al. (2008a)
attribute this difference to the fact that, unlike the earlier
studies, they did not include the magnetic dynamo mech-
anism of Spruit (2002). With or without this mechanism,
however, all studies conclude that stellar rotation altered
the evolution and fate of low-metallicity and Pop III stars.
We also point out that, though we sometimes refer to low-
metallicity studies, Pop III evolution is distinct from that of
low-metallicity, and results for one do not simply extrapo-
late to the other (e.g. Ekström et al. 2008b). This highlights
the need for continued investigation of rotating metal-free
stars.

It is apparent that the angular momentum of Pop III
stars plays a key role in their evolution and death, as well
as their subsequent impact on the IGM. Whereas the mass
scale of the first stars has been investigated in numerous
studies, their spin remains poorly understood. It is an open

question whether Pop III stars can realistically attain the
high spin needed for the above-mentioned processes to occur.
Current observations of massive O and B-type stars in our
Galaxy and the Large Magellanic Cloud show that they can
indeed be rapid rotators, spinning at a significant percentage
of break-up speed (a few tens of percent). They have a large
range of spin, from several tens of km s−1 to well over 300 km
s−1, with an average of about 100–200 km s−1 (e.g. Huang
& Gies 2008; Wolff et al. 2008). This does not necessarily
apply to Pop III stars, however, which formed in a differ-
ent environment. While Pop III stars formed in minihaloes
whose gravitational potential wells were dominated by dark
matter (DM), massive stars today form within molecular
clouds that are not DM dominated, and are embedded in
much larger galaxies. The angular momentum in the latter
case ultimately derives from galactic differential rotation on
the largest scales, and turbulence in the interstellar medium
(ISM) on smaller scales (see, e.g. Bodenheimer 1995). Wolff
et al. (2008) argue that their measured stellar rotation rates
reflect the initial conditions of the cores in which the stars
formed, particularly the core turbulent speeds and resulting
infall rates. To better determine the possible rotation rates
of Pop III stars, it is thus necessary to study the environ-
ment specific to where they formed.

To better understand the potential for the various spin-
dependent evolutionary pathways of Pop III stars, we per-
form a three-dimensional cosmological simulation that fol-
lows the evolution of primordial gas in a minihalo to densi-
ties of n > 1012 cm−3. Similar to Bromm & Loeb (2004) and
Stacy et al. (2010), we represent gravitationally collapsing
high-density peaks using the sink particle method first in-
troduced by Bate et al. (1995). This allows us to follow the
mass flow onto the sinks for many (∼ 100) dynamical times.
As a sink particle grows in mass, the angular momentum of
the accreted mass is recorded, allowing us to measure the
total angular momentum of the sink and estimate the spin
of the Pop III star represented by the sink. This is very sim-
ilar to the method used in Jappsen & Klessen (2004) when
they studied the angular momentum evolution of protostel-
lar cores, though their calculation had lower resolution and
was designed to study modern-day star formation as seen
in the ISM. We give further details concerning our numer-
ical methodology in §2, while in §3 we present our results,
including estimates of the stellar rotation rate. In §4 we dis-
cuss the implications for the evolution and death of Pop III
stars, and in §5 we address the possibility of sub-sink frag-
mentation. We summarize our main conclusions in §6.

2 NUMERICAL METHODOLOGY

2.1 Initial Setup

Similar to the method used in Stacy et al. (2010), we
carry out our study using GADGET, a three-dimensional
smoothed particle hydrodynamics (SPH) code (Springel
et al. 2001; Springel & Hernquist 2002). We perform the
final part of the simulation described in Stacy et al. (2010)
again, starting from approximately 4000 years (∼ 100 free-
fall times) before the first sink particle forms. This simula-
tion was originally initialized at z = 99 in a periodic box
of length 100 h−1 kpc using both SPH and DM particles.
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Figure 1. Left: Growth of sink mass over time. Solid line is the growth of sink A, and dashed line is the growth of sink B. Dash-dot

line is the result from Bromm & Loeb (2004). Red lines are power-law fits to the mass curves. Though sink A grows rapidly for the
first few hundred years, adding the accretion criterion of non-rotational support later causes its growth rate to be somewhat lower than

that found in Bromm & Loeb (2004) until a large merger event at 3800 years. Right: Ratio ε = Jsink/Jcent as sinks grow over time.
Representation of different sinks is the same as in the left panel. For sink B’s accretion and the first ∼ 1000 years of sink A’s accretion,

note the similarity in how both mass and ε increase over time. This is due to the steadily growing rotational support of the mass that
flows onto the sinks.

This was done in accordance with a ΛCDM cosmology with
ΩΛ = 0.7, ΩM = 0.3, ΩB = 0.04, and h = 0.7. To accel-
erate structure formation, we chose an artificially enhanced
normalization of the power spectrum of σ8 = 1.4. We have
verified that the density and velocity fields in the center of
the minihalo are very similar to previous simulations. Even
though we used an artificially high value of σ8, the angu-
lar momentum profile of our minihalo just before sink for-
mation was still very similar to that of other cosmological
simulations which used lower σ8 values. In particular, the
cosmological simulation of Yoshida et al. (2006), which used
σ8 = 0.9, and that of Abel et al. (2002), which used σ8 = 0.7,
resulted in minihalo profiles which were especially similar to
ours on the smaller scales from which the mass of the sinks
is accreted. This demonstrates that our realization leads to
conditions that are typical for primordial star formation (see
the discussion in Stacy et al. 2010).

To achieve high resolution we employed a standard hier-
archical zoom-in procedure (see Stacy et al. 2010 for further
details). This involved adding three additional nested refine-
ment levels of length 40, 30, and 20 kpc (comoving) centered
on the site where the first minihalo will form. Each level of
higher refinement replaces particles from the lower level with
eight child particles such that in the final simulation a parent
particle is replaced by up to 512 child particles. The highest-
resolution gas particles have a mass of mSPH = 0.015 M�.
Therefore, the mass resolution of the refined simulation is:
Mres ' 1.5NneighmSPH <∼ 1 M�, where Nneigh ' 32 is the
typical number of particles in the SPH smoothing kernel
(e.g. Bate & Burkert 1997). The main difference between the
current simulation and that described in Stacy et al. (2010)
is that we now record the angular momenta and velocities of
the sink-accreted particles before they become incorporated

into the sinks. This allows us to track the total spin of the
sink particles as they grow in mass.

2.2 Chemistry, heating, and cooling

The chemistry, heating, and cooling of the primordial gas is
treated similarly to that in earlier studies such as Bromm &
Loeb (2004), Yoshida et al. (2006), and Stacy et al. (2010).
We track the abundance evolution of the following species:
H, H+, H−, H2, H+

2 , He, He+, He++, e−, and the deuterium
species D, D+, D−, HD, and HD+. In the high-density disk
that forms within the minihalo, H2 is the dominant cooling
agent, and although deuterium is unimportant for the ther-
mal and chemical evolution of the gas at the late stages of
collapse and accretion studied here, we include it for com-
pleteness. We use the same chemical network and the same
cooling and heating terms as used in Stacy et al. (2010). This
included accounting for modified physics at densities greater
than ' 108 cm−3: three-body processes which accelerate the
formation of H2 until the gas becomes fully molecular around
' 1010 cm−3, enhanced cooling due to collisions between H2

molecules, H2 formation heating, and modified values for the
adiabatic exponent γad and the mean molecular weight µ.
As described in Stacy et al. (2010), the evolution of the pri-
mordial gas up to the formation of the first sink particle was
consistent with that of previous studies.

2.3 Sink Particle Method

We convert an SPH particle into a sink particle if it reaches
a number density of nmax = 1012 cm−3. SPH particles that
are within a distance racc of the sink are removed from the
simulation and their mass is also added to that of the sink,
provided that they are not rotationally supported against
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Figure 2. Left: Angular momentum Jsink of the sinks over time, taken by summing the angular momentum JSPH = mSPHvrotd of each

accreted particle just before it is added onto the sink. Solid black line represents sink A, dashed black line represents sink B. The angular
momentum of each sink grows as it accretes more mass, always staying at a fraction of Jcent (solid green line for sink A, dashed green

line for sink B). Note that for sink A, Jsink exceeds the stellar Jbreak−up (red line) by the end of the simulation. The horizontal blue
line shows the orbital angular momentum at the innermost stable circular orbit (ISCO), JISCO, for a 100 M� black hole. This value is

well exceeded by Jsink of both sinks. Right: Sink rotational velocity, vsink, measured at r = racc (with sink A denoted by a solid black
line, and sink B by a dashed black line). Values for vsink are recorded as the mass-weighted average of vrot for all accreted particles.

The upper (green) lines for each line type represent the velocity needed for centrifugal support, vcent. Note that vsink stays at a nearly
constant fraction of vcent.

infall towards the sink. We set racc equal to the resolution
length of the simulation, racc = Lres ' 50 AU, where:

Lres ' 0.5

(

Mres

ρmax

)1/3

,

with ρmax ' nmaxmH and mH being the proton mass. The
sink particle’s mass, Msink, is initially close to the resolution
mass of the simulation, Mres ' 0.7 M�.

We check for rotational support by comparing the
specific angular momentum of the SPH particle, jSPH =
vrotd, with the requirement for centrifugal support, jcent =√

GMsinkracc, where vrot and d are the rotational velocity
and distance of the particle relative to the sink. Once the
sink is formed, any SPH particle that satisfies d < racc and
jSPH < jcent is accreted onto the sink. A sink particle can
also be merged with another sink particle if these same cri-
teria are met. When the sink is first formed, and after each
subsequent accretion event, its position and velocity are set
to the mass-weighted average of the particles it has accreted.
In this way sink particles can grow and accrete mass over
time.

As discussed in Bromm et al. (2002) and Stacy et al.
(2010), our criteria for sink formation should be robust. A
gas particle must collapse two orders of magnitude above
the average density of the surrounding disk, ' 1010 cm−3,
before it is above the density threshold for sink formation.
This along with the small value for racc and the further
accretion criterion of non-rotational support ensures that
sinks are indeed formed from gravitationally collapsing gas.

Sink particles are held at a constant density of nmax

= 1012 cm−3, a constant temperature of 650 K, and a con-
stant pressure corresponding to its temperature and density.

Giving the sink a temperature and pressure prevents the ex-
istence of a pressure deficit around the sink that otherwise
would yield an artificially high accretion rate (see Bromm
et al. 2002; Martel et al. 2006). However, the sink can still
evolve in position and velocity due to gravitational and hy-
drodynamical interactions.

The sink particle method is very useful for various rea-
sons. It eliminates the need to incorporate chemistry, hydro-
dynamics and radiative transfer at extremely high densities
(n > 1012 cm−3). More importantly, by stopping the density
growth at n > 1012 cm−3, the method allows the evolution
of the region of interest to be followed for many dynam-
ical times. Without the sink particle method, this would
be computationally challenging because the increasing den-
sity would lead to prohibitively small numerical timesteps,
a problem sometimes called ‘Courant myopia’. Finally, the
sink particle method allows for a direct measurement of the
angular momentum growth and the accretion rate onto the
high-density region instead of having to indirectly extrapo-
late this from the instantaneous density and velocity profiles
at the end of the simulation (e.g. Abel et al. 2002; Yoshida
et al. 2006).

3 RESULTS

3.1 Sink Growth and Angular Momentum

3.1.1 Accretion Rate

The first minihalo within the cosmological box forms at
z ' 20. The subsequent evolution of the central region of
the minihalo to densities of n = 1012 cm−3 is described in
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Figure 3. Ratio of the energy of sink-accreted particles to the specific gravitational energy of the sinks (v2
cent = GMsink/racc). Solid

lines are for sink A, and dashed lines are for sink B. Upper (black) lines of each line type represent the energy of rotational motion,
middle (green) lines represent the energy of radial motion, and lower (blue) lines represent thermal energy. For both sinks, the rotational

energy component dominates for the majority of the accretion time, and a thin Keplerian disk is likely to develop on sub-sink scales.

Stacy et al. (2010). The growth of the first sink that forms,
which will be referred to as sink A, is similar to that found
in Bromm & Loeb (2004) as well as Stacy et al. (2010).
The mass growth is especially similar to that in Stacy et al.
(2010) for the first few hundred years, up to several dynam-
ical times after the sink initially forms. Though the sink ac-
cretion criteria have some small differences in each of these
three studies, this similarity in initial sink growth points
especially to the robustness of the density threshold crite-
rion for initial sink formation. After 5000 years of accretion,
sink A grows to a mass of 34 M�, similar to that found in
Bromm & Loeb (2004). However, this is largely due to a
significant merger event at around 3800 years, and before
this the mass of sink A is around 1/3 below that found in
Bromm & Loeb (2004). Furthermore, the final sink mass is
slightly less (∼ 20%) than the final mass found in Stacy
et al. (2010). The reduced accretion rate found in this cur-
rent calculation likely arises because a sink is not allowed to
accrete a particle if that particle is rotationally supported
against infall onto the sink, which is an additional condition
that was not included by Stacy et al. (2010). This condition
seems to slightly decrease the number of sink merger events,
though the growth rate between merger events is also some-
what reduced.

Around 300 years after the formation of sink A, a sec-
ond sink forms. Meanwhile, as sink A grows, a disk with
radius of about 1000 AU develops around the sink, and disk
fragmentation allows further sinks to form. By the end of
the simulation, 5000 years after sink A first forms, there is
a total of four sinks. The sink that is second-most massive,
which we will label sink B, has grown almost to 9 M� (Fig.
1), while the remaining two sinks are ∼ 1 and 7 M�. The
overall accretion rate of sink B, ' 2 × 10−3 M� yr−1, is
around 30% that of sink A, ' 7 × 10−3 M� yr−1. The ac-
cretion rate for both sinks does not stay at a steady value,
however, and actually declines as the sinks grow. To show

this we also provide power-law fits to the sink growth (red
lines in Fig 1). For sink A, Msink ∝ t0.48, and Ṁ ∝ t−0.52.
For sink B, Msink ∝ t0.25, and Ṁ ∝ t−0.75.

3.1.2 Angular Momentum

As the sinks grow in mass, the angular momentum of each
particle accreted, JSPH = mSPHvrotd, is added to the total
angular momentum of the sink, Jsink. Note that the scale
of the sink, racc = 50 AU, is smaller than the radius corre-
sponding to the sonic point:

rsp =
GM∗

c2
s

, (1)

where cs is the sound speed. A typical sink mass is 10 M�,
and the highest-temperature, high-density (n > 108cm−3)
gas is approximately at 7000 K, or cs ' 7 km s−1. This
yields rsp ' 180 AU. For the cooler disk gas, T ∼ 500 K and
cs ' 2 km s−1, so that rsp is larger, ∼ 2000 AU, and similar
to the size of the large-scale disk. The sinks therefore eas-
ily resolve the scale of the sonic point. Angular momentum
transport from inside rsp to outside rsp will be difficult once
the inflow becomes supersonic (Ulrich 1976; Tan & McKee
2004). In Section 3.2, we will show that the inflow onto the
sinks does indeed quickly become supersonic, and in fact
the total angular momentum within the sonic point steadily
grows as more mass continues to fall in. However, the angu-
lar momentum inside rsp can still be redistributed through
torques within the large-scale disk.

Jsink stays at a fairly steady fraction, ε = Jsink/Jcent,
of the angular momentum required for full centrifugal sup-
port at the accretion radius, Jcent = Msinkjcent. Figures 1
and 2 show this fraction to range from ε ' 0.45 − 0.5 for
sink A and ε ' 0.25 − 0.35 for sink B. Thus, on the scale of
the accretion radius the sinks never become fully rotation-
ally supported. Rotational velocities of the accreted particles
were also recorded, and the total rotational velocity of each
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Figure 4. Specific torque acting on the gas within the central 5000 AU of the simulation box, the region enclosing the large-scale
star-forming disk. Torques are calculated at a representative time of 2500 years after the first sink forms. Shown is the z-component,

perpendicular to disk plane, of all contributions to specific torque as measured from sink A. The asterisk denotes the location of sink
A, the cross denotes the location of sink B, and the diamonds are the locations of the remaining lower-mass sinks. There is a total of

six sinks, but this number will later be reduced through sink mergers. Note the spiral structure, where gravitational torques will remove

angular momentum from the disk center on a timescale of approximately 100-1000 years.

Figure 5. Radially averaged timescales versus distance from the sink at a typical accretion time of 2500 years. The cooling timescale,
tcool, is shown in blue as the lower set of lines, and the angular momentum loss timescale, tam, is shown in black as the upper set of

lines. Solid lines are for sink A, and dashed lines are for sink B. For both sinks, tcool is an order of magnitude shorter than tam from the
sink edge out to ∼ 1000 AU, the edge of the large-scale disk.

sink, vsink, can be determined through a mass-weighted av-
erage of each accreted particle’s vrot (right panel of Fig. 2).
Similar to the behavior of Jsink, vsink stays at the same fairly
constant fraction of vcent =

√

GMsink/racc.

The specific angular momentum of the sinks does not
stay perfectly constant, however. Comparing the mild evo-
lution of ε with the sinks’ mass growth (Fig. 1) shows a
general correspondence between them, similar to that found

in the simulations of Jappsen & Klessen (2004). For sink B
in particular, the shape of the mass versus time curve is very
similar to that of the ε versus time curve, and the same ap-
plies for the first ∼ 1000 years of sink A’s accretion. These
are periods when the mass that flows onto the sinks is grad-
ually increasing in rotational support as the large-scale disk
spins up. The gas close to sink A is the first to spin up, and
so sink A reaches its maximum ε earlier on in the simulation.

c© 2010 RAS, MNRAS 000, 1–13



Rotation speed of the first stars 7

It is interesting to compare Jsink with the minimum
angular momentum required for centrifugal support against
infall onto a black hole, as this is one of the minimum re-
quirements for a successful collapsar engine to power a GRB.
For a non-rotating black hole of mass MBH, the innermost
stable circular orbit occurs at rISCO = 6GMBH/c2. This
corresponds to a minimum angular momentum of JISCO =√

6GM2
BH/c, which would be slightly smaller for rotating

black holes. As can be seen in Fig. 2, sink A and sink B
both gather at least an order of magnitude more angular
momentum than necessary for a collapsar engine. Whether
this large sink-scale angular momentum continues down to
stellar scales is discussed below.

3.2 Stellar Rotational Velocity

3.2.1 Thin Accretion Disk

We now address how the measured sink spin can be ex-
trapolated to the scale of the final (MS) Pop III star. To
this end, let us compare Jsink to angular momentum val-
ues corresponding to rotational break-up speeds on stellar
scales. A representative value for Jbreak−up can be found
assuming a mass of 100 M� and a radius of 5 R�, typi-
cal for massive Pop III MS stars (e.g. Bromm et al. 2001),
though this value may be somewhat larger for high rotation
rates. In the latter half of the simulation, Jsink for sink B ap-
proaches Jbreak−up, while sink A easily surpasses Jbreak−up

(red line in Fig. 2). If all of sink A’s angular momentum
became confined to smaller stellar scales this would thus be
unphysical. This becomes even more apparent after an anal-
ogous examination of sink A’s rotational velocity. At the
end of the simulation, sink A has a rotational velocity of
vsink = 11 km s−1. We can extrapolate vsink to the stellar
scale of 5 R� by assuming conservation of angular momen-
tum to find v∗ = vsinkracc/5R�. This turns out to be over
20,000 km s−1, significantly greater than our typical stellar

break-up velocity†, vbreak−up '
√

G 100M�/5R� ' 2000
km s−1 Again, this is unphysical, and serves as an example
of the classic angular momentum problem in the context of
star formation (e.g. Spitzer 1978; Bodenheimer 1995), now
extended to the immediate protostellar environment.

Further insight can be found by evaluating the centrifu-
gal radius,

rcent =
j2
sink

GMsink

, (2)

where jsink = Jsink/Msink. For sink A, in the latter part of
the simulation jsink is typically around 8 × 1020 cm2 s−1,
while sink B has jsink ' 3 × 1020 cm2 s−1. At the end of
the calculation, rcent ' 10 AU for sink A and rcent ' 6AU
for sink B, around two orders of magnitude larger than the
stellar sizes cited above. At a length sale of rcent, contrac-
tion would be halted by the centrifugal barrier, and a disk
would form. Accretion onto the star would then continue

† The formally correct equation for break-up velocity is

vbreak−up =
√

2
3
G M/R, where the factor of 2

3
accounts for defor-

mation due to rotation. However, due to the approximate nature

of our calculations, for simplicity we omit this factor of 2
3

from

our calculations.

through the disk, and the disk is expected to grow in size.
As mentioned above and described in Stacy et al. (2010), in
the simulation a disk structure does indeed form and grow
well beyond the sink radius. Other very high-resolution sim-
ulations also find that primordial gas develops into disks on
small scales, less then 50 AU from the star (Clark et al. 2008,
2010).

We therefore infer that much of the angular momen-
tum of the sinks will be distributed in a disk, while most
of the sink mass lies within the small ' 5 R� star. There is
evidence for the existence of similar disk structure around
massive stars in the Galaxy (see, e.g. Cesaroni et al. 2006;
Kraus et al. 2010). The nature of the disk can be estimated
through a comparison of the thermal energy with the kinetic
energy of rotational and radial motion at the sink accretion
radius. For gas flow onto a gravitationally dominant central
mass, dimensionally the sum of these energies per unit mass,
should follow the approximate relation (e.g. Narayan & Yi
1994),

v2
rot + v2

rad + c2
s ∼ GMsink

racc

≡ v2
cent. (3)

Since sink A is the dominant mass, the above relation will
more accurately apply to sink A than to sink B, but the
energy comparison remains useful for both. Figure 3 shows
these energies for each sink relative to its specific gravity,
or v2

cent, and how these ratios evolve over time. Overall sink
ratios were calculated using a mass-weighted average over
the individual particles accreted. For sink A, the rotational
energy strongly dominates after ∼ 300 years and stays dom-
inant for the rest of the simulation. For sink B, the thermal
energy and energy of radial motion remain at similarly low
values throughout most of the sink’s accretion. Around 500
years after sink B forms, the rotational energy becomes the
largest contribution to the total sink energy, and this domi-
nance steadily grows for the rest of the calculation. This rel-
atively large amount of rotational energy and low amount of
thermal and radial energy for both sinks implies that their
sub-sink disks will become thin and Keplerian.

A comparison of the cooling time, tcool, with the
timescale for angular momentum loss, tam, of the gas around
the sinks gives further supporting evidence for sub-sink,
thin, Keplerian disks. We calculate tam directly from the
simulation by recording the acceleration on each gas parti-
cle and determining the torque due to numerical viscosity
(~τvisc) as well as the torque exerted by gravity and pressure
(~τgrav and ~τpres). The total torque on a given particle within
a gas cloud is given by

~τtot = ~τgrav + ~τpres + ~τvisc

= mSPH
~d × (~agrav + ~apres + ~avisc) , (4)

where

tam ' JSPH/|~τtot| , (5)

and

tcool ' nkBT

Λ
, (6)

with kB being the Boltzmann constant, T the gas temper-
ature, and Λ the cooling rate (in erg cm−3 s−1). We find
that ~τgrav and ~τpres dominate, accounting for 80% of the to-
tal. Figure 4 shows the z-component, perpendicular to the
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disk plane, of the specific torque acting upon the gas within
the large-scale disk, as measured from the location of sink
A. The spiral structure indicates the dominance of gravi-
tational torques which remove angular momentum from the
center of the disk on timescales of 100−1000 years, enabling
disk material to be accreted onto the sinks.

Fig. 5 shows these timescales for the gas particles in
radially averaged bins. From this we can see that for the
gas surrounding each sink, tcool ∼ tam at distances greater
than 1000 AU. However, at 1000 AU tcool falls below tam.
This coincides well with the fact that this is the radius of
the large-scale disk which embeds the whole stellar multiple
system. At the sink edges, tcool is nearly an order of magni-
tude shorter than tam for both sinks. Thermal energy of the
gas is radiated away quickly enough that rotational energy
will likely remain dominant. Though torques are active, par-
ticularly gravitational ones from the spiral structure in the
disk, they are unlikely to remove angular momentum quickly
enough to prevent the formation of a sub-sink Keplerian disk
once the central stellar mass has grown substantially.

3.2.2 Extrapolation to Stellar Surface

If the entire extent of the sub-sink disks is indeed Keplerian
and the disk self-gravity is negligible, then gas within the
sinks will rotate at v(r) ' vKep(r) '

√

GM∗/r, where r
is the distance from the star, M∗ = f∗Msink is the mass of
the star, and f∗ is the sink mass fraction that ends up in
the star while the remaining mass is stored in the disk. For
f∗

<∼ 1, we will have v(r) <∼
√

GMsink/r. If the inner edge of
the disk extends all the way to the stellar surface, which is
expected if magnetic fields are not important (see §6), then
the gas acquired by the star from the accretion disk will be
rotating at full Keplerian velocity.

The location of the stellar surface varies as the star’s
radius evolves. The total angular momentum acquired by
the star will depend upon this evolution, and at any given
time this total J∗ is given by

J∗(t) =

∫ t

0

j(R∗)Ṁ dt =

∫ t

0

√
GM∗R∗Ṁ dt , (7)

where R∗ is the radius of the star. To evaluate this expres-
sion, we use the same prescription for the protostellar radial
evolution as described in Stacy et al. (2010), which in turn
was based upon the earlier work of, e.g. Stahler et al. (1986)
and Omukai & Palla (2003). In this prescription, when the
protostar first forms as a small hydrostatic core, it will ini-
tially undergo a phase of adiabatic accretion and gradual
expansion. During this time the protostellar radius will grow
as

R∗I ' 50R�

(

M∗

M�

)1/3 (

Ṁ

Ṁfid

)1/3

, (8)

where Ṁfid ' 4.4 × 10−3M� yr−1 is a fiducial rate, typi-
cal for Pop III accretion. During the subsequent phase of
Kelvin-Helmholtz (KH) contraction, the radius will shrink
according to

R∗II ' 140R�

(

Ṁ

Ṁfid

)(

M∗

10M�

)−2

. (9)

We estimate that the transition from adiabatic accretion to
KH contraction occurs when the value of R∗II falls below
that of R∗I. For M∗ and Ṁ we employ the power-law fits
discussed in §3.1, and we set M∗ ' Msink in the following
analysis. In doing this we have made the simplifying assump-
tion that nearly all of the gas accreted onto the sink quickly
flows through the relatively low-mass disk onto the domi-
nating massive star. We also extend the fits to 105 years,
roughly the point when KH contraction will cease and the
star settles onto the MS, with a final radius of 5R�. Al-
though the Pop III radial evolution and MS size is based on
work that does not account for varying accretion rates and
stellar rotation, which may inflate the radius, this should
still give a general picture of how the Pop III rotational
velocity will evolve.

The resulting evolution of v∗ = J∗/R∗ for each sink is
shown in Fig. 6. Note that during the stars’ initial slow ex-
pansion, the velocity is not quite at break-up because the
stars are gathering mass from gradually increasing radii.
Once the stars begin KH contraction, however, the total
angular momentum of the stars in fact exceeds break-up,
but in this case we assume that the angular momentum will
slow the KH contraction accordingly, and we adjust the stel-
lar radius such that the star will again rotate at break-up
speed. By setting the right-hand side of Equ. 7 equal to JKep,
we find that the radius during this third slowed contraction
phase will evolve according to

d

dt
lnR∗III = − d

dt
lnM (10)

Once this phase begins, the star will rotate at break-up
speed, v∗ = vmax '

√

GMsink/R∗.
Given this model, at 105 years the star within sink A has

mass of 125 M�, a radius of 7 R�, and a rotational velocity
of 1800 km s−1. The star within sink B has mass of 15 M�,
a radius of 12 R�, and a rotational velocity of 500 km s−1.
Though details of this model are uncertain, particularly how
the accretion rate will evolve during later times beyond the
end of our simulation, we can still expect spin-up to occur
during KH contraction, likely yielding rotational velocities
near break-up speed.

We can also make a more conservative estimate to rep-
resent the possible case that sub-sink torques do become
strong enough to yield sub-Keplerian rotation rates. Since
the overall sink angular momentum stays at a fairly constant
fraction of Jcent, we can apply this to sub-sink scales as well.
Then we have v(r) = ε vKep(r) = ε

√

GMsink/r. This is sim-
ilar to the situation described by Narayan & Yi (1994) in
which the gas cannot cool efficiently, causing the accretion
flow to stay at approximately the virial temperature. The
resulting viscosity is high relative to cold gas, allowing an-
gular momentum to be transported outwards and leading
to rotational velocities that remain at a constant fraction
ε < 1 of vKep(r) for a large range of radii. At 105 years,
given ε = 0.45 (see Fig. 1), the star within sink A will be ro-
tating at v∗,low ' 800 km s−1 (see Fig. 6). This is still a high
rotational velocity that is a substantial fraction of the break-
up speed. The fastest-rotating stars considered by Woosley
& Heger (2006) and Yoon & Langer (2005), for instance,
had ε values of 0.45 - 0.5. The sink B star would not rotate
quite as rapidly due to its lower mass and its slightly lower
values of ε, but for ε = 0.35 the sink B star is still estimated
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sink M∗(5000yr) [M�] M∗(105 yr) [M�] jsink [cm2 s−1] v∗ [km s−1] v∗,low [km s−1]

A 34 125 8 × 1020 1800 800
B 9 15 3 × 1020 500 300

Table 1. Stellar masses at 5000 years, extrapolated mass at 105 years, specific angular momenta of the sinks, final stellar rotational

velocities v∗, and the more conservative estimate of stellar rotational velocity v∗,low .

to reach a significant rotational velocity of v∗,low ' 300 km
s−1. Also note that, in the conservative case, vmax at 105

years is slightly higher than that shown in Fig. 6 because
KH contraction is no longer slowed by excess angular mo-
mentum, and the stars have already reached the MS radius
by this time.

4 IMPLICATIONS OF RAPID ROTATION

4.1 Rotational Mixing

Numerous previous studies have found that high rotational
velocities such as those predicted from our simulation will
alter the stellar evolution (see, e.g. Maeder & Meynet 2000).
Models of Maeder (1987), for instance, find that above a crit-
ical velocity of 350 km s−1 for 20 M� stars (or 30-40% of
break-up velocity), rotationally induced mixing will lead to
a very different evolution. Instead of the expected redward
track off the MS in the HRD, mixing reduces the chemical
gradient throughout the star enough that no extended hy-
drogen envelope forms. The star smoothly transitions from
hydrogen to helium burning, and the stellar radius stays
roughly constant while the temperature and luminosity both
steadily increase. The star then enters the WR stage, dur-
ing which heavy mass loss leads to a decrease in the lumi-
nosity, though the temperature still remains high. As will
be further discussed in the next section, updated studies
by Yoon & Langer (2005) and Woosley & Heger (2006) of
low-metallicity stars, and also studies by Heger & Langer
(2000) of solar-metallicity stars, all similarly find that mas-
sive stars with high rotation rates (∼ 40-50% of break-up
speed) can undergo chemically homogeneous evolution to
become rapidly rotating WR stars.

Rotational mixing is likely to occur according to the
calculations we present here, particularly if the stars do in-
deed rotate at nearly full break-up speed (see Fig. 7). This
will have important implications for Pop III feedback. Ef-
fective temperatures of stars that undergo such rotational
mixing can reach up to an order of magnitude higher than
corresponding non-rotating stars, while luminosities may be
two to three times as high (see, e.g. Yoon & Langer 2005).
This will lead to an increased emission of ionizing radiation
at harder wavelengths, so the HII regions will be larger than
expected from non-rotating models of stars of the same mass
(e.g. Greif et al. 2009).

It is important to note that these results do vary de-
pending upon metallicity and details of the stellar model.
For instance, in contrast to earlier studies, Ekström et al.
(2008a) find that even rotational speeds of up to 70% of
break-up speed will not be sufficient to drive chemically ho-
mogeneous evolution. However, they do find rotation to in-
crease the MS lifetime by 10-25%, which again would in-
crease the total amount of ionizing radiation from rotating

massive Pop III stars. A final distinction between rotating
and non-rotating Pop III evolution is that rotating models
generally yield higher total amounts of metals by the end of
their nucleosynthesis (Ekström et al. 2008a). Depending on
how this metallicity gets spread to the star’s surroundings
through stellar winds and SN explosions, higher metallic-
ity will enhance the later cooling and collapse of gas when
subsequent generations of stars form, most likely lowering
their average mass (e.g. Omukai 2000; Bromm et al. 2001;
Schneider et al. 2006; Frebel et al. 2007, 2009; Greif et al.
2010)

4.2 GRBs and Hypernovae

The final fate of the stars in our simulation will depend on
the mass they reach through accretion, though computa-
tional limitations prevent us from following the entire accre-
tion history over the stellar lifetime of ∼ 3 Myr. However,
extrapolating from the first 5000 years (see Fig. 1) implies
that both stars we have discussed are likely to grow sig-
nificantly more massive. They should certainly be massive
enough to avoid a white dwarf fate and make a neutron
star or black hole, assuming they do not die as PISNe and
leave behind no remnant at all. If they in fact die as core-
collapse SNe, we can estimate the effect of rotation on the
later SN explosion. Though a black hole remnant is more
likely, particularly for the more massive star of sink A, we
can derive a more conservative estimate by considering a
neutron star remnant. As described in Woosley & Heger
(2006), the total rotational energy of a resulting neutron
star of radius 12 km and gravitational mass of 1.4 M� will
be Erot ' 1.1 × 1051 (5ms/P )2 erg, where P is the rota-
tion period of the neutron star. They find that for Erot to
be comparable to the energy of a hypernova, ∼ 1052 erg, P
would need to be ≤ 2 ms. In their low-metallicity models
that begin with stars rotating with similar ε values to what
we found for sink A (ε ∼ 0.45), they infer resulting neutron
star rotation rates that do meet this criterion. They find
the same results even for lower ε like for those of sink B,
though this is only if magnetic torques are not included in
the model. Thus, even using the more conservative estimate
it is conceivable that the rotational energy reservoir found
in sink A and B of our work could be enough to power a
hypernova. If the stars rotate more rapidly, at nearly their
break-up velocity as we predict, then hypernovae would be
even more likely.

Will there still be enough angular momentum for the
collapsar engine to work on these stellar scales? If we use
the low estimate of J(r) = ε JKep(r) = ε

√
GMsink r, then

on these scales the angular momentum for both sinks still
easily meets the required J > JISCO, especially if their high
ε values continue as the stars grow to larger masses (see
Fig. 7). But will such stars retain this angular momentum
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Figure 6. Evolution of stellar rotation. Lower black lines show the rotational velocities v∗ of the stars as they initially grow slowly

through adiabatic accretion and then undergo KH contraction onto the MS. Upper green lines are the break-up velocities of the stars,

vmax '
√

GMsink/R∗. Solid lines are for sink A, and dashed lines are for sink B. Note that once KH contraction begins at around 1000

years for sink A and 3000 years for sink B, both stars quickly spin up to the full break-up velocity.

Figure 7. Angular momentum relative to the center of the stars, assuming they have grown to a mass of 100 M� and have an approximate

radius of 5 R�. Thick black solid line represents the situationof Keplerian rotationwhere J(r) = JKep(r). The thin diagonal lines represent
the case of J(r) = ε JKep(r). For sink A (solid line), ε = 0.45 was used. For sink B (dashed line), we used a smaller value of ε = 0.35.

Blue line (labeled as “collapsar”) shows JISCO. Red line (labeled as “mixing”) shows 0.4∗Jbreak−up, the approximate minimum angular
momentum necessary for a low-metallicity star to undergo rotational mixing and chemically homogeneous evolution, as determined by

Yoon and Langer (2005) and Woosley and Heger (2006). The angular momentum requirement for the collapsar engine, J > JISCO , is
easily met on sub-sink scales. Rotational mixing will readily occur as well as the stars approach their break-up speed.

as they evolve? Low metallicity stellar models in Yoon &
Langer (2005) and Woosley & Heger (2006) that were ini-
tialized with ε values similar to that of sink A show that
such stars may indeed be able to retain sufficient amounts
of angular momentum in their cores throughout their evo-
lution to the pre-SN stage, depending upon the strength of
magnetic fields and the mass loss rate during the WR stage.
Though there is still some angular momentum loss in their
GRB-forming models, it is limited because rotationally in-

duced mixing allowed these stars to avoid a red giant phase
on their path to becoming WR stars. However, Woosley &
Heger (2006) generally find that when both magnetic fields
and strong mass loss are included in their models, the ability
of even their high-ε models to meet the GRB requirements
becomes borderline.

For the lower ε value of 0.35 as found for sink B, a
GRB becomes yet less likely, and the star cannot even go
through a WR phase unless the models exclude magnetic
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fields. However, as discussed in §3.2, the stars within both
sink A and sink B are expected to rotate at a much higher
fraction of break-up speed - close to 100%. In this case, the
above path for becoming a GRB should work yet more read-
ily. Unless there are mechanisms for significant angular mo-
mentum transport away from the stars (see §6), the angular
momentum condition for the collapsar engine will be met.

5 SUB-SINK FRAGMENTATION

Up to this point we have assumed that each sink will host a
single star-disk system, but it is possible that more than one
star could exist inside a sink. For instance, a sink merger
might lead to a sub-sink binary instead of the presumed
coalescence of two stars. We may also consider the possibility
that the mass of the sink will fragment and a sub-sink stellar
multiple will form in this way. As described by Jappsen &
Klessen (2004), this is more likely for higher values of β, the
ratio of rotational to gravitational energy. As in Goodman
et al. (1993) and Jappsen & Klessen (2004), we can arrive at
a simple estimate by assuming that the sinks are undergoing
solid-body rotation, have constant angular velocity Ω, and
have uniform density. In this case, sink A has Ω = 1.5×10−9

s−1 and sink B has Ω = 6 × 10−10 s−1. We also have

β =
(1/2) IΩ2

qGM2/R
, (11)

where I = pMR2 is the moment of inertia, p = 2/5, and
q = 3/5. In this case sink A has β = 0.070 and sink B has
β = 0.044, very similar to the values derived for the sinks in
Jappsen & Klessen (2004). The requirement for fragmenta-
tion ranges from β > 0.01 to β > 0.1, depending on the true
density structure and thermal properties of gas on sub-sink
scales, as well as the effects of magnetic fields (e.g. Boss &
Myhill 1995; Boss 1999). For the above values of β, it is thus
not entirely certain whether subfragmentation would occur,
and this will need to be determined with higher resolution
studies.

As discussed earlier, however, disk structure is expected
even on sub-sink scales, so it would also be appropriate to
examine the Toomre criterion for disk fragmentation:

Q =
csκ

πGΣ
< 1 . (12)

Here, Σ is the disk surface density and κ the epicyclic fre-
quency, which is equal to the angular velocity for a disk un-
dergoing Keplerian rotation. However, evaluating Q would
require knowledge of disk temperature and surface density
on sub-sink scales, which is not available. As discussed in
§3.2, cooling is likely to occur faster than angular momen-
tum transport, leading to a sub-sink Keplerian disk. How-
ever, gas within these inner regions is more susceptible to
heating and other protostellar feedback. This makes disk
fragmentation more likely to occur in the cooler outer re-
gions of the disk on scales much larger than the sinks, and
indeed such fragmentation is seen in the simulation. Simi-
lar points were made in studies such as Kratter & Matzner
(2006) and Krumholz et al. (2007).

If a sub-sink binary were to form, however, this could be
yet another pathway towards a GRB. As discussed in studies
such as Fryer et al. (1999), Bromm & Loeb (2006), and Bel-
czynski et al. (2007), a binary that is tight enough can allow

Roche lobe overflow and a common-envelope phase to oc-
cur. This will remove the hydrogen envelope of the primary,
fulfilling one of the requirements for a collapsar GRB. Even
if the stars are rapid rotators, however, Belczynski et al.
(2007) find that Pop III binaries will yield GRBs in only
a small fraction, <∼ 1%, of cases. Tidal interactions rarely
spin up one of the binary members sufficiently to produce
a GRB, and in fact such interactions more often cause the
binary members to spin down.

On the other hand, if a wide 50 AU binary were to
form within the sinks, this may still leave enough angular
momentum for a GRB to form through the rotational mixing
pathway. The total angular momentum that will go into the
binary orbit will be

Jorb = M1M2

√

aG (M1 + M2) (1 − e2)

M1 + M2

, (13)

where a is the semimajor axis of the orbit, e is the eccentric-
ity, and M1 and M2 are the stellar masses (e.g. Belczynski
et al. 2007). If sink A becomes a circular-orbit binary with
M1 = M2 = 17 M�, then Jorb = 5 × 10−2 M� pc km s−1,
about 50% of Jsink for sink A at the end of the simulation. If
the remaining angular momentum went to the spin of each
of the binary components, a GRB may still be able to form.

6 DISCUSSION AND CONCLUSION

We evolved a three-dimensional SPH cosmological simula-
tion until the formation of the first minihalo at z = 20,
and then followed the evolution of the minihalo gas up to
maximum density of 1012 cm−3. After this point we used
the sink particle method to continue the simulation for 5000
years. A large-scale thick disk of order 1000 AU that formed
around the main sink was resolved and so the calculation was
able to follow angular momentum transport that occurred
within this disk down to resolution length scales of 50 AU.
We find that there is sufficient angular momentum in Pop III
star-forming cores, represented by the sink particles, to yield
rapidly rotating Pop III stars. More specifically, we find that
the star-disk systems are likely to rotate at Keplerian speeds.
This leads to stellar rotational velocities that can potentially
exceed 1000 km s−1 for stars with M >∼ 30 M�. This in turn
should lead to chemically homogeneous evolution, yielding
hotter and more luminous stars than without rotation. The
stars should also retain sufficient spin to power hypernovae
as well as collapsar GRBs (e.g. Nomoto et al. 2003; Yoon &
Langer 2005; Woosley & Heger 2006). Such GRBs may be
observed by the Swift satellite, which has already detected
GRBs at a redshift as high as z ≈ 8.2 (Salvaterra et al. 2009;
Tanvir et al. 2009), and may also be detected by possible fu-
ture missions such as JANUS and EXIST.

We emphasize the caveat that we did not fully resolve
stellar scales. We have measured the total angular momen-
tum accreted within racc ' 50 AU of the star, and we have
argued that a Keplerian disk and perhaps a binary is ex-
pected to form on sub-sink scales, still leaving enough angu-
lar momentum for one or two rapidly rotating stars. How-
ever, there are further processes which can transport angular
momentum away from rotating stars. For instance, angular
momentum may be lost through stellar winds, but the mass
and angular momentum loss through winds is expected to
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be much lower for low-metallicity and Pop III stars than for
higher-metallicity stars (Nugis & Lamers 2000; Kudritzki
2002). Other processes include disk torques induced by grav-
itational instability as well as viscous torques, which have a
variety of sources including hydromagnetic instability (see,
e.g. Papaloizou & Lin 1995 for a review).

In particular, the magneto-hydrodynamic (MHD) as-
pect of Pop III star formation is still very uncertain (e.g.
Maki & Susa 2007), and we therefore here neglect any angu-
lar momentum loss due to magnetic torques. Earlier work,
however, gives some hint as to the possible effect of mag-
netic fields. Machida et al. (2008) conclude that if a star-
forming primordial cloud has a large enough initial mag-

netic field (B > 10−9
[

n/103cm−3
]2/3

G), a protostellar jet
will be driven provided that the cloud’s rotational energy
is less than its magnetic energy. However, Xu et al. (2008)
find that the Biermann battery mechanism and flux freezing
alone will not amplify magnetic fields in a collapsing halo
quickly enough to reach this threshold value. In contrast,
small-scale dynamo amplification as described by Schleicher
et al. (2010) could generate sufficient magnetic fields for the
magneto-rotational instability (MRI) to operate in primor-
dial protostellar disks (e.g. Balbus & Hawley 1991). The
resulting turbulent viscosity would facilitate outward angu-
lar momentum transfer in the disk, and it may further al-
low generation of sufficient magnetic field strength to drive
collimated protostellar outflows that can also remove angu-
lar momentum (e.g. Tan & Blackman 2004; Silk & Langer
2006). This may furthermore facilitate some form of ‘disk-
locking’ as described by various authors such as Koenigl
(1991), Shu et al. (1994), and Matt & Pudritz (2005), where
the stellar rotation will be ‘locked’ to a rate given by the
star’s mass, accretion rate, magnetic field strength, and ra-
dius. Such a model was described by Koenigl (1991), for ex-

ample, to yield Ω∗ ∼ GM
5/7
∗ Ṁ3/7B−6/7R

−18/7
∗ , where Ω∗ is

the star’s angular velocity and B the stellar magnetic field
strength. In short, the rate at which these effects will re-
move angular momentum from the star is very dependent
on the still uncertain magnetic field strength in Pop III star
forming regions, although such effects are a likely part of
the explanation for slowly rotating stars observed in the
Galaxy (see, e.g. Bodenheimer 1995). Whether this also ap-
plies in the early Universe will be best determined through
future numerical simulations. A three-dimensional cosmo-
logical simulation that can resolve stellar scales and follow
MHD processes for many dynamical times is highly com-
putationally demanding. For the moment, our preliminary
calculation provides an upper limit for the Pop III stellar
rotation rate.

A comparison with Jappsen & Klessen (2004) shows in-
terestingly similar results. The average specific angular mo-
mentum of their protostellar objects was 8 × 1019 cm2 s−1,
and the typical mass of each object was ' 1 M�. They find
that the specific angular momentum increases with mass,
with j ∝ M2/3 being their preferred fit. Our sink parti-
cles are 9 and 34 times more massive and so should have
specific angular momenta about 4 and 10 times higher, or
3 − 8 × 1020 cm2 s−1. This is indeed the specific angu-
lar momentum measured for our sinks. This also compares
well with the range of observed angular momenta of var-
ious structures in the Milky Way. For instance, the aver-

age specific angular momentum of binaries in the Taurus
star-forming region was found by Simon et al. (1995) to
be j ' 2 × 1020 cm2 s−1, and similar values were found
for G-dwarf stars by Duquennoy & Mayor (1991). For less-
evolved structures, Caselli et al. (2002) found an average of
j = 7×1020 cm2 s−1 for cores of mean mass of 6 M�. Good-
man et al. (1993) observed larger cores of approximately
50 M� and obtained an average of j ' 2 × 1021 cm2 s−1.
These cores would be expected to lose angular momentum
as they evolve into protostars, leading to smaller values sim-
ilar to those observed in stellar binaries. Despite the differ-
ent initial conditions which give rise to Pop III stars versus
stars in our Galaxy, the overall angular momentum reser-
voir for both is very similar. Thus, just as rapidly rotating
massive stars are observed today (e.g. Huang & Gies 2008;
Wolff et al. 2008), rapidly rotating massive stars seem likely
to exist in the early Universe as well. Unless they are spun
down by processes such as magnetic torques or bipolar out-
flows, such rapid rotation rates must play an important role
in the evolution and final state of the first stars.
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